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1. INTRODUCTION y_‘;._
n ]

e

Rain is a major consideration in the design of most military systems and

equipment that must operate in or through the troposphere. In addition to the mech- ;
anical impact of rain (for example, erosion on the leading edges of aerospace ve- ,.'.::
hicles, leakage into sealed components and so on), rain is a major cause of ::
(N

attenuation of microwave signals used in communications, surveillance, and weapon- Lo
ry. Satellite communication systems employing EHF are especially vulnerable to )
o

attenuation due to rain. i "
et

One -min rainfall rates are generally considered most practical for design con- ::-"&
siderations and as input to attenuation models. However, records of rainfall amounts :._'-" "
for periods less than an hour are not readily available. Amounts for increments ‘
\J

less than 5 min were primarily collected during special field programs for limited :;
time periods, generally one to three years. This has prompted the developnmient of .r:’
(} 1

numerous models to estimate frequencies of 1-min rates, ’ 'é:,;;
[ (]

(Received for publication 3 March 1987) . ‘
1. Tattelman, P., and Grantham, D.D. (1985) A review of models {or estimating -.':
1-min rainfall rates for microwave attenuation calculations, IEEE Trans. NN
Commun., COM-33(No., 4):361-372. s

2. Tattelman, P., and Scharr, K.G. (1983) A model for estimating 1-min rainfall Y

rates, J. Clim. and Appl. Meteor., 22(No. 9):1575-1580, '
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For most mechanical design considerations involving rain, it is sufficient to

3 This is

because military equipment is usually designed for operation worldwide based on

know probabilities of extreme rates at locations noted for heavy rain,

conditions during the worst month in the most severe part of the world for each
climatic element. However, attenuation of radio signals can be significant at rela-
tively low rain rates that occur with varying probabilities just about anywhere in

the world. Therefore, statistics on the frequency and duration of 1-min rain rates
are required for locations representing many climatic rainfall regimes. These can
be used in attenuation models to determine required power levels, the [requency

and duration of communication outages, and the need [or space diversity of terminals
or other alternatives. This report describes a method used for extracting 1-min
rates from a largely untapped reservoir of original raingage recordings, and pre-

sents analyses of the data obtained for eight locations,

2. DATA

Weighing raingage recordings for approximately 300 first-order U,S. weather
stations are archived on microfiche at the National Climatic Data Center
(NCDC), Asheville, North Carolina. Our task is to build a data base of 1-min
rainfall rates over a period of ten years at a number of stations., Stations are
being chosen primarily to represent as many different climatic rainfall regimes as
possible. Data from stations in close proximity will also be studied to determine
spatial variability of 1-min rain-rate distributions and results will be presented in
a future report. Note thal rain rates for solid precipitation represent melted
values.

Ten years of 1-min rain rate data for eight locations were analvzed for this
report. The locations, the percent of time it rained at each (not including missing
data), and the percent of the rain data that were missing is provided in Table 1,
Missing data represent periods of rain when chart records were unavailable for
digitizing. Since hourly totals were nevertheless available, it was assumed that it
rained throughout the hour at the averaged rate for each minute, Therefore, the
percent of missing data in Table 1 was calculated by assuming the maximum pos -
sible number of minutes of missing rain, These data were not used in anv of the

analyses; however, Table 1 indicates that estimated missing data for rates at or

above 0.05 mm/min constitute a small fraction of the total,

A
AL
XN
_— A} .‘l\f “
3. Tattelman, P., and Willis, P.T. (1985) Model Vertical Profiles of Fxtreme ?’ N
Rainfall Rate, l.iquid Water Content, and Dron-=ize Di<'ribution,
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The data at all locations except Urbana were obtained from raingage recorrd-

ings stored at NCDC for the period 1 January 1970 to 31 December 19749, The iari

| as part of a USAF contract.4' > The Urbana data cover a period of 10, 25 vears
from 1 June 1969 to 31 August 1979. They were obtained using a high-speed

| weighing raingage recorder described in the references.

3. EXTRACTION OF 1-MIN RATES

‘ The trace on a weighing raingage chart (Figure 1) is the representation of the
integral of the rainfall rate over time. To obtain rates, we differentiate the

function that describes the trace at each point of interest, that is, at each minute,
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Figure 1. Standard Weighing Raingage Trace (smaller than original)

4. Jones, D.M. A,, and Wendland, W.M. (1983) Statistics of Instantaneous Rain -
fall Rates, Final report for contract F19628-82-K- . - -83-

AD AT30089.

5. Jones, D.M.A., and Wendland, W.M. (1984) Some statistics of instantaneous
precipitaion, J. Clim. and Appl. Meteor., 23:1273-1285.
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for Urbana were obtained from the Illinois State Water Survey, Champaign, lilinois

Wy
%

XA
AN

,

e

%%
XX

WiV

v
2

~
8
AR

.

Pl ey

L NN
- .

NeSsSSS

Ly

e
\;I ’\,

5 %

Bl
A
5\'»«

LS
T T
R X A
.Q;-ﬁ._"

Y
:&‘n
¥

.
0

B RO




i ¢ 1. N 1 roe ] . 1 e
14 1 ) 1 . LR e ot [}
* ! ' 3 I ¢ Lo e t -
ot I R , i . . s Y ¢
. -t - \ e - 1 Tiapbe - i ! 3 1 .
» - ¥ AT 1.
Y 1.0 Yl 1 wte T S s 1t f 1 -
b P e s . 1~ A e tog - st . f
- 1 . . - ' ie . LY 1 1 - A ¢ 1 i . .
S T L T e A R R R A R SR . L L e
B R S R B R R N D LI AT TRl R T TR PR B AP ey T e e 10 e
[ Vier vt 0 wrmm e e [ "Heea - T A (TN ARV I s b P

6 o
and Bt ann ot B b amn wn t Ruthieor?, [ hie Doy ss g paee s T

i~ essentially - recararen feepan thase arts, 10'.‘4.

3.1 Digitization

Hourly rainfa.l amounts for all U.S. first-order weather stations .re ub-

hished monthly by NCDC an Local Chimatological Data,  This pubhicatinon was

used to determine ~eriods of measurable rain at selected stations.,  Paper
copies of the microfiche records for these periods were enlarged to more than
‘wice therr original size. The original chart has a resolution of 0.2 mm per min
(faor example, a 15-min time interval is 3-mm long). Our trial tests showed that
we could consistently digitize points with a repeatability of +0,1 mm that corres-
ponds to +0.5 min on original size charts. By expanding the charts to a resolution
ol 0.428 mm per min we have essentially halved the uncertainty in the time-axis
measurements to a quarter of a minute,

Fach precipitation trace is sampled using the incremental stream mode of the
digitizing tablet, This means that a point is recorded each time the cursor is
moved a prescribed distance along the trace, that in this application is set at
0.25 mm. Therefore, during low rainfall rate episodes (flat trace) points are sam-
pled at approximately half-min intervals. During high-rate episodes (sharp <urve)
the points are sampled at smaller intervals of time, thus the sampling rate per min

is much higher,

6. Ruthroff, ¢, L., and Bodtmann, W, F. (1976) Computing derivatives from
equally spaced data, J, Appl. Meteor,, 15:1152-1159,

7. Bodtmann, W.F., and Ruthroff, C.1.. (1976) The measurement of 1-min
rain rates from weighing raingage recordings, J. Appl. Meteor.,
15:1160-1166.
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3.2 Processing

For reasons discussed earlier, we know that the computations of rainfall
rates will be contaminated by a high-frequency noise component induced by small
inaccuracies in the digitized representation of the trace. Our goal is to remove
the noise and recover the signal. This is done by employing a suitable low -pass
filter.

The computational steps that were employed in our 1-min rain rate processing

were based on the procedures in Ruthroff and Bodtmann, 6 They are:

(1) Half-min interpolation. Linear interpolation is used to produce both

an x- and a y-coordinate value for each half-min increment of the
precipitation episode. Digitizing errors occur with equal likelihood

in x and y. However, the interpolation procedure forces all of the
error onto the y coordinate only, that simplifies subsequent processing.

(2) Running mean smoother, A three-point running mean smoother is

applied to the half-minute data to ameliorate the effects of some of
the larger inconsistencies.

(3) Detrend trace. This allows the data representing the precipitation

trace to be expanded into a finite Fourier series,

(4) Fourier expansion. The detrended data are converted from the time

domain into the frequency domain by use of a Fast Fourier Transform
(FFT).
(5) Fourier filter, Filtering is accomplished by disregarding all of the

Fourier coefficients that fall beyond the filter cutoff and then reconstruc-
ing the precipitation trace with the coefficients that remain.

(6) Final smoother. A cubic spline smoother is invoked to eliminate

residual sinusoidal components resulting from the filter.
(7) Rate computation. The filtered trace is made monotonically increasing

to eliminate negative rainfall rates. One-min rates are computed
and those less than 0.25 mm per hr are set to zero.

3.2.1 FILTERING AND SMOOTHING
3.2.1.1 Fourier Expansion

Any stationary time series can be transformed from the time domain to the
frequency domain by the following:8

8. Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction,
John Wiley & Sons, [nc., 258 pp. T
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X = A + A cosw.t+ B, sinw.t) 1
LT At L A RS Tt )

o <j=n/2

where Xt represents values at time t, Ao is the mean of the time series, w is the
Fourier frequency, and Aj and Bj are coefficients. Each point Xt of the functioun

is calculated by summing sines and cosines of each of the j Fourier frequencies
and weighting each by a Fourier coefficient (A., B)). The Fourier frequencies w
can be thought of as having the dimension of cycles per unit of time (wj = 2n )/n)
where n is the number of data points, Since it takes a minimum of two points to
represent the shortest cycle, there can be a maximum of n/2 Fourier frequencies,
In this application, we have data values equally spaced at half-minute intervals,
Therefore, a precipitation episode lasting, say 2 hrs, will have 240 points,
(Episodes range from 1 to 8 hrs for our filtering process.) The highest resolv-
able frequency will be at j = 240/2 = 120 and will have a value ofw]. - 120/240 - 0.5
cycles per half minute or 1 cycle per minute., The lowest frequency, of course,
is always 1 cycle per total period, which in this example corresponds to a wave-
length of 2 hours., Thus, a Fourier decomposition of our 2-hr episode consists
of waves having periods from 1 min to 2 hrs,

The fact that a digitized precipitation trace can be represented as a combina-
tion of contributions from many wavelengths makes the Fourier transform attractive
as a filtering tool. We now have a means to separate the contributions supplied by
the short wavelength noise from the longer wavelength contributions associated with

the real precipitation episode.
3.2.1,2 rourier Filter

The Fourier expansion of the detrended precipitation trace vields n/2 Fourier
coefficients. Low-pass rectangular filtering is accomplished by setting to zero atl
of the A. and B. coefficients beyond the j that is chosen as the filter cutoff. The
obvious Jquestian is, where does one place the filter cutoff?

To obtain insight into which frequencies contribute most to the signal, we com-

pute the following function:

w) = 2 a2 - 8BS forj- 1,2, ...n ., (2)
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where n is the number of half-minute intervals and A, and B, are coefficients in N
Eq. (1). The plot of log [I(wj)] versus j, known as the periodogram.8 is used (N
because the variation between frequencies is generally several orders of magnitude.
The signal spectrum will decrease rapidly to a flatter, randomly oscillating f:;e"l
spectrum resulting from noise, 6 The filter cutoff should be placed at the inter- *‘,l:"
section where the steep meets the flatter portion of the curve. An example of a Moty

periodogram with the filter cutoff represented by a dashed line is shown in Figure 2. LAY

LOG [I{wj)]

O A A L A A L 1
0 20 40 60 80 100 120 140 160 it
FOURIER FREQUENCY NUMBER s

AT

)

oY
Figure 2. Example of a Periodogram Used to Determine Fourier Frequency : .h.:
Cutoff Y,
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3.2.1.3 Cubic Spline Smoother

When the precipitation trace is reconstructed without the shorter wavelengths
associated with noise, the filtered trace may display a very subtle sinusoidal
oscillation. This, of course, is an artifact resulting from the sine-cosine basis
used in the Fourier decomposition. While the total effect upon the rate computa-
tions is small, it does give a time series of computed rates a rather unnatural
appearance. Therefore, a cubic spline smoothing routine with a variable sensi-

tivity parameter is used to mitigate the oscillation.
3.2.2 TUNING FOR OBJECTIVE ANALYSIS

Section 3. 2. 1. 2 explains the method for selection of the filter cutoff parameter.
However, visual inspection of the periodogram for each of the thousands of precipi-
tation episodes that are being processed is clearly impractical. Therefore, an
automated parameter selection criterion that is optimized for high precipitation
rates was instituted.

Two simulated precipitation episodes were used to determine the characteris-
tic noise structure associated with manually digitizing high-rate precipitation.
Each trace was digitized ten times by the same person. As expected, the rate
computations were quite noisy and there was a rather large variability in the value
for the maximum 1-min rate, Figure 3 shows the effects of various processing
steps on the magnitude of the maximum 1-min rate for one of the episodes. The
uncorrected mean was 1.27 mm/minute. When all of the processing steps were
used (curve d in Figure 3), the values for the maximum rate stabilized around the
corrected value of 1 mm/minute.

Based on these two sets of trials, cutoff parameters were chosen that were a
function of the length of the precipitation episode, that, for our [iltering process,
ranged from 1 to 8 hours. The value of the parameter begins at -5.5 for a 1-hr
event and decreases in increments of 0. 1 for each additional hour in the time series,
The cutoff selection criteria were validated by many experiments using actual digi-
tized data and various analytic functions.

Normally, a single pass will be made through the filtering and smoothing
routines. However, a check is made to determine the maximum 1-min difference
in rate between the filtered and unfiltered data. This is done to ensure that
the filter hasn't excessively smoothed a high-rate precipitation event, If the maxi-
mum difference exceeds 0.25 mm/min, an additional filter iteration is invoked.
The filter cutoff parameter is decreased by 0. 1 and new rates are computed. This

process continues, if necessary, for a maximum of three iterations.

---w - Lh L] 3t L SEY
‘- o b5 s«\‘w\-.(.\',\_.\‘. V;,\J",'

"
RO R ,‘,t ‘-"\‘ ',l‘l,c\.l“.u'l.n .\\...a't,u'h W ‘.O\J".\ .. .c".\ Bt O OO o~ )

‘C"‘f"‘w\twv\' \ﬂ -~ \ N \‘



T T T T T T T T T BT

@ - Maximum raw one- minute rates. '
b - Processed as in a with running mean smoother. i
C - Processed as in b with Fourier filter. AL

1)

o

d - Processed as in ¢ with cubic spline smoother. e
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Figure 3. Effects of Various Processing Steps on the Computed Maximum !
1-min Precipitation Rate e

As a final check, the experiment conducted in R-B6 was repeated. In that Py

experiment, white noise was added to the function
3 8%
y=1-exp(-2x") o
Wt
and rates were computed before and after filtering. The filter was able to recover "fc"'\"

the original signal with a high degree of accuracy. Our processing steps were also -
very successful in recovering the original signal. i ";‘.‘

10 N

REAZOLIEMIO OO0 0
B I O
.4"’p 'n"'x‘ DORN NIOAX) '1*"!“‘!.?‘




3.3 Quality Control

In order to ensure a high-quality data set, we have employed extensive quality
control procedures. The digitized data are scrutinized in four places during the
processing, two before filtering and two after, The checking procedures are:

(1) Checks During Digitizing. The first checking occurs in the

digitization program. The technician is asked to verify the header
containing all of the housekeeping information that was entered for
the trace. The program then performs a check on the lengih of
the episode and the technician verifies the computed totals for
length of time and precipitation amount,

(2) Checks During Data Transfer. During the data transfer from our

data entry computer to the data processing computer, each trace
is displayed on a graphics CRT. The housekeeping information is
again checked, and the shape of the digitized trace is compared to
the original. Traces having errors are marked for deletion at
this point.

(3) Checks Against Published Data. The 1-min rates resulting from

the processing program are summed by the hour, printed, and then
compared to the amounts published in Local Climatological Data.

(4) Checks on Extreme Values, The final quality control step is used

to check extreme or possibly anomalous data. An entry in a log
file is automatically made if one or more of three criteria are met,
The three criteria are: (1) high precipitation rate (2 1.25 mm/min);

(2) a large discrepancy in the maximum precipitation rate between

filtered and unfiltered data (2 0.5 mm/min); and (3) excessively
short wavelengths used in the reconstruction of the trace after

filtering (£ 2.5 min).

4. ANALYSES OF 1-MIN RATES

The analyses of 1-min rates presented here are intended primarily to assess
the impact of rain on EHF communications. Most previous studies of short-
duration rain rates for use in attenuation models provide data in the form of annual
rain-rate frequencies, 1 However, annual statistics can be very misleading because
critical rates are concentrated in only a few months of the year at most locations.
A low annual frequency of a critical rate can be intolerably high in these months.
Although annual rain-rate frequencies are presented for each location studied,
monthly or seasonal rain-rate statistics are preferable for assessing the impact

of attenuation caused by rain.
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4.1 Rain-rate Duration Frequencies

Annual average rain-rate frequencies for six duration times are provided for
each location in Figures 4 and 5. Rain rates are equalled or exceeded during each
minute of the specified duration. Actual frequencies are plotted for every
0.05 mm/min rate up to 1,00 mm /hr and for every 0, 10 mm/min thereafter.
Values plotted for a frequency of 10'2 represent the highest rate that was equalled
or exceeded for the specified duration.

Monthly average rain-rate frequencies (for six different duration times) are
provided for the worst (most extreme) month at each location in Figures 6 and 7.
Values are plotted in the same manner as Figures 4 and 5. The worst month at
each location was subjectively chosen from all the monthly plots to ''generally"
represent the highest frequencies of rates for all durations, Frequencies for some
rates and durations may be higher in other months.

To get an appreciation of how the frequency of 1-min rates varies during the
year, Figures 8 and 9 provide monthly average frequencies of 1-min rates for mid-
season months. Frequencies of high rates are generally greatest during July at
most locations when heavy convective showers are most common. Variability is
least for Key West and Seattle where rates are relatively high and low, respective-
ly, during each of the months.

4.2 Rain-rate Duration Probablilities

For many design considerations it is more practical to express the likelihood
of events in terms of their probability, The Poisson distribution is an appropriate
tool for quantifying random events, such as rainfall occurrences, if the events in
any time interval are statistically independent of events in another time interval.
In this case, rain events are 5-, 10-, 15-, 20-, and 30-min durations and the time
interval is a gpecified month of the year (for example, July). Since these rain
events are independent, the probability, P, of y rain events in a month can be cal-
culated using the Poisson formula

-A Ly
e A

(3)
where A is the mean number of cvents per month. Therefore, the probability of at
least y occurrences of an event is
y-1
P(at least y) = 1 - ) P(z) .

o

z=0
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Figure 4. Average Annual Frequency of 1-min Rain Rates for Six Duration Times
at Boston, Denver, Grand Junction, and Key West , .
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Figure 6. Average Worst-month Frequency of 1-min Rain Rates for Six Duration
Times at Boston, Denver, Grand Junction, and Key West T
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Figure 7. Average Worst-month Frequency of 1-min Rain Rates for Six Duration
Times at Omaha, Rapid City, Seattle, and Urbana e
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One -min rainfall rates versus duration and the probability of at least one AN
occurrence during the worst month are provided in Table 2. Rates corresponding : :"{
to the probability of at least three occurrences during the worst month are pro- it el
vided in Table 3. The worst (most severe) month was subjectively chosen to ;‘?_ -
"generally'" represent the highest rates for each probability and duration. Rates ::f: X
for some probabilities and durations may be higher in other months. ;‘-I\ :
Table 4 presents the longest duration at or above specified threshold rain :\ “q:::
rates and the month of the year that it occurred. Since these are the most extreme _—
occurrences in 10 years (10. 25 yvears at Urbana), the probability that thev would _:'_.-'_"_.r:
occur in that month in any one year is approximately 0. 1. _E:E:
RN

4.3 Time Between Events ‘L:
AN
To more completely assess the impact of an attenuation outage due to rain, it ,:::,-’:,
is also important to know how soon an outage may recur. That is, if it 1s raining E:‘-:::
at or above a critical rate then drops below that rate, what time period would ::—:"_. X
e¢lapse before the rate was exceeded again? We call the period of time between .\,‘?\
the occurrence of specified rates the time between events (TBE). For this study, AL
we considered five threshold rates, 0.10, 0.25, 0.50, 0.75 and 1.00 mm/min, :.z:'.:-::
that were equalled or exceeded for each of 5 (and 10) consecutive minutes. Each ::'t::r
rate and duration constitutes an event, for a total of five 5-min events and five '."t"
10-min events. When an event occurs (for example, a rate of at least 0. 10 mm/min f::
for 5 consecutive min), what is the TBE until this event recurs? :-.::-s.
The TBE's at each location were determined for each meteorological season Ej‘:.:
(for example, summer is June, July, and August), The first and last TBE for each z-"‘-‘f\
season was determined by scanning up to 30 days prior to the beginning and after Ty
the end of the season. For example, if the first event occurred on 5 June, the :-‘:::
first TBE is determined by looking back up to 30 days to the previous event at that :E;:"‘\'
threshold rate and duration. If there was no prior event within the 30-day scan, 'Q:-:\.h
the TBE is considered to be greater than 30 days and is lumped with other TBE's ¢

greater than 30 days.
19
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Continuing with this example, if there were no other events for the remainder, 'v,,‘c‘.;

)
of the summer season, the scan stops on 31 August and a second TBE greater than ,E'::;E:
30 days is recorded. If, however, a recurrence happened on 30 August, another s
TBE greater than 30 days is recorded and the scan continues until the next event, 5
or until 29 September, to determine the last TBE, If there are no more events, d
there are three TBE's all of which are greater than 30 days. If there are no events "?:::
during an entire season, a TBE is not tallied. For TBE's up to 30 days, the exact ath
time period is recorded. ~,‘,{.
The cumulative probability distributions of TBE for Boston, Key West, and " ':.:::‘
Urbana during the season with the greatest number of events (summer) are provided ‘::‘.:::::
in Figures 10, 11, and 12. These locations generally had the highest number of :%}E‘
events of the sites studied. Data are not provided if a location did not have at ‘
least eight occurrences of an event. The number of events indicated in the figures "i:i.:
are for 10 summer seasons at Boston and Key West, and 11 summer seasons at \“\;
Urbana. o h..:;
et
5.  EFFECTS OF RAIN ATTENUATION ON 5':.'\":55
SATELLITE COMMUNICATIONS vy
o
Ordinarily, attenuation models are used to determine path attenuation given $ ';
the point rain rate. For this exercise, we reversed the order of calculation by ;'i"i'
determining critical rain-rates that would cause an outage for a specified total ‘::: .‘:;'
path attenuation of 15 dB at 30 GHz. The USAF Environmental Technical Applica- :::::‘o::.
tions Center (ETAC), Systems Support Section, provided critical rain rates based :::::g::‘
on the model developed by Crane. 9 -
The propagation path length through the rain was determined using mean 1 'ﬁ::i
monthly freezing levels above the ground for the locations and months in Table 5. .'0'::‘41“
This table specifies the critical rates for the indicated path elevation angles at :: .:
each location, Critical rates were calculated for the worst month of the year; that « .",-
is, the month that generally had the highest frequency of high rain rates during the 'i.;a:;;‘.
period studied. Rain intensities are highest during the summer months when "‘.‘::3:‘.
freezing levels are also at their highest. Thus the number of outages is greatest ::“‘:‘l‘.':
during these months. The highest critical rates are at locations with the lowest ::“:‘::
freezing levels above the ground. High elevation and high latitude locations have
relatively low freezing levels above the ground.
9. Crane, R.K, (1980) Prediction of attenuation by rain, IEEE Trans. Comm.,
COM-28(No, 9):1717-1733,
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o
Table 6 provides the mean percent of time in the worst month with system ‘a‘.::::;
outages due to rain, Values were estimated using the rain-rate data for 10 years ;'::...’;:
at each location (11 years at Urbana), and the critical rates in Table 5. From the .:f:.?
table it is apparent that outages due to rain are relatively infrequent. On average, .
one could expect system reliabilities of at least 97.5 percent at all elevation angles ,:::::;‘f
(not considering factors other than rain). At elevation angles of 30° and higher, l:,..‘;‘s:?“
the reliability increases to at least 99.3 percent. :;E:::'.::.'
To put the true impact of rain attenuation into perspective, it should be noted . ‘
that each minute of rain is not randomly distributed in the month. When it is rain- '.:“::::::.
ing hard enough to cause an outage, it is likely to persist for a period of time. It :?‘:'.::::E
is the duration of precipitation events causing outages that deserves special atten- :::::?,.,:
tion for EHF satellite communications. RhAR
Table 7 provides the mean number of system outages due to rain with durations A
of at least 5, 10, 20, and 30 min in the worst month, p‘\(::
At the low elevation angle of 10°, the mean number of outages lasting at least ;:
30 min ranges from 8 to 16 at all locations except Denver and Grand Junction. The Sy,
number of outages for each duration decreases rapidly with increasing elevation R
angle, z*%-
Table 8 provides probabilities of at least three outages due to rain in the worst EE_'.
month for durations of 10, 20, and 30 minutes. Here again, the elevation angle "\;‘.:" A\
has a profound influence on the likelihood of an outage., This is especially true -
for Seattle which has very high probabilities of outages at 10° elevation, but very .\-ﬁ :
low probabilities at higher elevations. :‘f ":::
Another important consideration is the interval between outages. The informa- W ,:c
tion contained in Figures 10, 11, and 12 can be used to get some valuable insight :‘f":

on time between outage events lasting 5 or 10 minutes, For example, in Figure 10a
for 5-min rain events in Boston (summer season), cumulative frequency of time
between events (TBE) is plotted for 0. 10 and 0. 25 mm/min. These can be used
to estimate the TBE for the critical rain rates of 0. 12, 0.20, and 0.27 mm/min
for elevation angles of 30", 50°, and 70°, respectively from Table 5. About
10 percent of the events during the season will recur within 10 min of another
event. Between 20 and 25 percent of the events recur within an hour of another
event,

At Key West (Figure 11a), about 20 percent of the 5-min events at critical
rates for elevation angles of 30°, 50°, and 70° recur within an hour of another
event, At Urbana (Figure 12a) 30 to 40 percent of the 5-min events at critical rates

recur within an hour of another event.
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Table 5. Critical Rainfall Rates Causing an Outage During the Worst Month for
Stated Elevation Angles (based on a frequency of 30 GHz and a fade margin of ..:
15 dB) oy
0.
' ':
“w A
s
Critical Rainfall Rates
: n
{(mm/min) ...::::
i
Mean Freezing Elevation Angle :.':
. Level (Y
Location Month (km) 10° 30° 50° 70° LN
Boston, Mass. Aug 4.18 0.02 0.12 0.20 0.27 N
)
Denver, Co. Aug 3.13 0.04 0.17 0.27 0.38 RSe
I'A‘F."J
Grand Junction, Co. Jul 3.45 0.04 0.15 0.25 0.34 et
Key West, Fla, Aug 4. 69 0.02 0,10 0.17 0.24 Fiath
¢
Omaha, Neb, Jul 4,31 0.02 0.12 0.19 0.26 "_\,::'{
")
Rapid City, Neb, Jun 2. 89 0.05 0.18 0.30 0.42 b:‘. h,
A0
Seattle, Wash, Sep 3.31 0.04 0.16 0.26 0.38 o]
)
Urbana, Ill. Jul 4,46 0.02 0.1t 0.18 0.25 ::E‘
2008
o,
gy
&
Table 6. Estimated Mean Percent of the Time With System Outages .. 9
Due to Rain in the Worst Month for Stated Elevation Angles (based on t,',-‘j
a frequency of 30 GHz and a fade margin of 15 dB F’_\.r:‘
LA
oy
o= g
5
Percent of Time in the Month ]
508
Elevation Angle \:\
v
Location 10° 30° 50° 70° o
{4
Boston, Mass. 2.46 0. 32 0. 15 0.10 . b
Denver, Co. 0.56 0.11 0. 06 0.03 ¢ :,‘_
Grand Junction, Co. 0. 15 0.02 0.02 0.01 -
R
Key West, Fla. 2.02 0. 63 0.38 0. 29 v
Omaha, Neb, 1. 46 0.25 0. 18 0. 13 I
\"-‘ (Y
. . A
Rapid City, S. D, 0.81 0.12 0.06 0. 04 ‘.::_\\\
SoAa N
Seattle, Wash, 1.16 0.03 0.01 0.01 S
Urbana, Ill, 1. 68 0. 47 0.34 0. 27 "
:_-_‘;"
AN A
,\'.\.;
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6. CONCLUSIONS

Analyses of 10 years of 1-min rain data are presented for eight locations (10, 25
years at Urbana). These analyses can be used to determine outage frequencies,
durations, and probabilities based on critical rain rates causing an outage. The
critical rates can be determined using an attenuation model such as the one de-
veloped by Crane. 9

Based on the Crane model, critical rain rates were determined for various
elevation angles for a frequency of 30 GHz and a fade margin of 15 dB at the eight
locations studied. Outage statistics were estimated for each location using these
and the 1-min rain rate analyses. The results show the profound influence of the
elevation angle of the propagation path on the quantity and duration of outages.
Lower elevation angles greatly increase the path length through the rain with outages
resulting at rates as low as 0.02 mm/min at some locations.

Total path attenuation is also greatly influenced by the height of the freezing

level, above which the attenuation from ice and snow is negligible. Freezing levels
are lowest in the winter so that a much higher rain rate would be required to pro-
duce an outage. Of course rain rates are generally much lower during the winter
months, further minimizing the likelihood of an outage. Because rain rates and
freezing levels are highest during the warmest months, design of satellite EHF
communications should be based on conditions during the month of the year when
the frequency and duration of outages is greatest. Annual statistics that include
the very low outage-probability winter months conceal the real impact of rain

attenuation on operations.
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